Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl

نویسندگان

  • Motsie E. Mashuga
  • Lukman O. Olasunkanmi
  • Abolanle S. Adekunle
  • Sasikumar Yesudass
  • Mwadham M. Kabanda
  • Eno E. Ebenso
چکیده

The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results. OPEN ACCESS Materials 2015, 8 3608

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution

Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...

متن کامل

Inhibitive Assessment of N-(8-bromo-3H-phenoxazin-3-ylidene)-N,N’-Dimethylaminium, as a Novel Corrosion Inhibitor for Mild Steel in 1.0 M HCl

The inhibition effect of N-(8-bromo-3H-phenoxazin-3-ylidene)-N,N’-dimethylaminium (DPhDMA) on the corrosion behavior of mild steel in 1.0 M HCl solution has been studied. Weight loss measurements, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical calculations were used in this study. Electrochemical results revealed that DPhDMA is an effective mixed...

متن کامل

Effect of Aaronsohnia Pubescens Extracts to Prevent Against the Corrosion of Mild Steel in 1.0 M HCl

The corrosion inhibition and adsorption (CIA) performance of the aqueous extracts of Aaronsohnia pubescens aerial parts (Odorized aqueous extract (OE) and Deodorized aqueous extract (DE)) on the corrosion mild steel (MS) in 1M hydrochloric acid were evaluated. It is based on the weight loss (WL) analysis, kinetic and thermodynamic parameters, and electrochemical methods both stationary (Potenti...

متن کامل

Thermodynamic, Electrochemical and Surface Studies of Dendrimers as Effective Corrosion Inhibitors for Mild Steel in 1 M HCl

the Corrosion inhibition of mild steel in 1 M HCl has been investigated using three dendrimers by means of gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM) and energy dispersive Xray spectroscopy (EDX) techniques. Results showed that inhibition efficiency increases with increasing concentration of dendrimers. Among the s...

متن کامل

Solanum Tuberosum as an Inhibitor of Mild Steel Corrosion in Acid Media

Acid extract of Solanum tuberosum was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 media using different techniques: Weight loss (in different temperatures viz., 303, 313 and 323 K), Potentiodynamic polarization, Electrochemical Impedance Spectroscopy (EIS) and SEM techniques. The studies reveal that the plant extract act as good inhibitors in both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015